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COURSE INTRODUCTION 

 

Real numbers form the backbone of mathematics, serving as the foundation for various 

mathematical disciplines, including calculus, analysis, and algebra. In this Unit, we will revisit 

the fundamental concepts of real numbers, exploring their properties, classifications, and 

significance in mathematical contexts. 

The course is divided into 10 units. Each Unit is divided into sub topics. The Units provide 

students with a comprehensive understanding of the real number system and its characteristics. 

They also examine continuity, differentiability, and integrability concepts in a rigorous 

mathematical framework, analyze sequences and series of real numbers and functions, and apply 

these concepts to solve theoretical and practical problems. 

There are sections and sub-sections inside each unit. Each unit starts with a statement of 

objectives that outlines the goals we hope you will accomplish. Every segment of the unit has 

many tasks that you need to complete.  

We wish you pleasure in the Course. Please try all of the exercises and activities included in the 

units.  

Course Outcomes: After completion of the course, the students will be able to: 

 

1. Recall the many properties of the real line and learn to define sequence in terms of 

functions from to a subset. 

2. Explain bounded, convergent, divergent, Cauchy and monotonic sequences. 

3. Apply to calculate their limit superior, limit inferior, and the limit of a bounded sequence. 

4. Analyze various applications of the fundamental theorem of integral calculus. 

5. Evaluate uniform continuity, differentiation, integration and uniform convergence. 

6. Create the ratio, root, and alternating series and limit comparison tests for convergence 

and absolute convergence of an infinite series of real numbers. 

 

Acknowledgements: 

The content we have utilized is solely educational in nature. The copyright proprietors of the 

materials reproduced in this book have been tracked down as much as possible. The editors 

apologize for any violation that may have happened, and they will be happy to rectify any such 

material in later versions of this book. 
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UNIT-1 

Introduction to Real Numbers 

 

Learning Objectives: 

 Understanding the Real Number System 

 Properties of Real Numbers 

 Applications of Real Numbers 

 Supremum and Infimum 

 

Structure: 

1.1 Review of basic concepts of real numbers 

1.2 Countable and uncountable sets 

1.3 Real number system 

1.4 Archimedean property 

1.5 Supremum, infimum, and Completeness 

1.6 Summary 

1.7 Keywords 

1.8 Self-Assessment questions 

1.9 Case Study 

1.10 References 

 

 

 

 

 

 

 

 



 

Page | 2  
 

1.1 Review of basic concepts of real numbers: 

Real numbers form the backbone of mathematics, serving as the foundation for various 

mathematical disciplines, including calculus, analysis, and algebra. In this Unit, we will revisit 

the fundamental concepts of real numbers, exploring their properties, classifications, and 

significance in mathematical contexts. 

 

Definition 1.1  

Real numbers include all rational and irrational numbers and can be represented as points on the 

real number line. They are denoted by the symbol ℝ. 

Properties of Real Numbers: 

Real numbers possess several key properties that make them essential in mathematical analysis: 

1. Closure: The summation, subtraction, and multiplication of two real numbers are also real 

number. 

2. Commutativity and Associativity: Addition and multiplication of real numbers are 

commutative and associative. 

3. Distributive Property: Multiplication distributes over addition for real numbers. 

 

Ordering: Real numbers can be ordered such that for any two real numbers a and b, either 

                      

 

Classification of Real Numbers: 

Real numbers can be classified into different categories based on their properties: 

i. Natural Numbers (N): The set of positive integers, including 1, 2, 3,... 

ii. Whole Numbers (W): The set of non-negative integers, including 0 and all positive 

integers. 

iii. Integers (Z): The set of positive and negative whole numbers, including zero. 

iv. Rational Numbers (Q):numbers whose fractional representations use two integers and 

whose denominator does not equal zero. 

v. Irrational Numbers: Numbers that can‟t be expressed as a rational of two integers, such as 

√2 and π. 
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1.2 Countable and uncountable sets: 

In the realm of set theory, understanding the distinction between countable and uncountable sets 

is crucial. These concepts have profound implications in various branches of mathematics, 

including real analysis, topology, and measure theory. Let's explore these concepts in detail. 

Countable Sets: 

A set is said to be countable if number of elements are finite. 

Ex.          

Finite Sets: Finite sets are trivially countable since their elements can be enumerated in a finite 

sequence. 

Countably Infinite Sets: Sets that are infinite but still have a one-to-one correspondence with N 

are countably infinite. Examples include the set of all integers Z, the set of even integers, and the 

set of odd integers. 

Uncountable Sets: 

A set is considered uncountable if its members cannot be put into one-to-one correspondence 

with the natural numbers. In other words, there is no way to list all the elements of an 

uncountable set in a sequence. 

Real Numbers: The set of real numbers R is a classic example of an uncountable set. This was 

famously proven by Georg Cantor using his diagonal argument. 

Power set: The power set of any set (the set of all its subsets) is always uncountable. This 

follows from Cantor's theorem. 

Cardinality: 

Cardinality is a measure of the "size" of a set, indicating the number of elements it contains. 

Countable sets have cardinality either finite or countably infinite, while uncountable sets have 

cardinality strictly greater than that of the natural numbers. 

Countable Sets: Countable sets have cardinality   , also known as aleph-null. 

Uncountable Sets:Cardinality of uncountable sets is bigger than  0.The cardinality of the real 

numbers R is denoted by c, and it is strictly greater than   . 

1.3 Real number system: 

The real number system is an extensive framework used in mathematics to describe and analyze 

numbers that can be found on the number line. It includes a variety of subsets with distinct 

properties and applications. Here's a comprehensive overview of the real number system: 
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Components of the Real Number System: 

1. Natural Numbers (N): 

The set of positive integers used for counting. Examples: 1,2,3,… 

Properties: Closed under addition and multiplication, but not under subtraction or division. 

 

2. Whole Numbers (W): 

The set of natural numbers including zero.Examples: 0,1,2,3,… 

Properties: Closed under addition and multiplication. 

 

3. Integers (Z): 

The set of whole numbers and their negatives.Examples: …,−3,−2,−1,0,1,2,3,…… 

Properties: Closed under addition, subtraction, and multiplication, but not under division. 

 

4. Rational Numbers (Q): 

Numbers that can be state as a fraction
 

 
, here a andb are integers and b≠0. Examples: 

1/2,−4/3,5(since 55 can be written as 5/1) 

Properties: Dense in the real number line (between any two rational numbers, there is another 

rational number). 

 

5. Irrational Numbers: 

Numbers that can‟t be state as a simple fraction. Their decimal expansions are non-terminating 

and non-repeating. Ex‟s: π,e,√  

Properties: Not closed under addition, subtraction, multiplication, or division (e.g.,        

  which is rational). 

 

Subsets of Real Numbers: 

1. Positive and Negative Numbers: 

Positive real numbers (  ): All real numbers greater than zero. 

Negative real numbers (  ): All real numbers less than zero. 
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2. Non-Negative and Non-Positive Numbers: 

Non-negative real numbers: All positive numbers including zero. 

<---|---|---|---|---|---|---|---|---|---|---|---|---> 

... -3  -2  -1   0   1   2   3   4   5   6   7   ... 

Figure 1.1 Real Number Line 

Figure 1.1 showing the real line number with    to   which includes the all rational and 

irrational numbers both.  

 

1.4 Archimedean Property: 

Definition 1. 2 

The Archimedean property is a fundamental property of the real numbers that can be stated as 

follows: 

“For any two real numbers x and ywith   , there exists a natural number n such that      . 

In other words, no matter how large y is or how small x is, we can always find a natural number 

n such that the product    exceeds y. This property ensures that the real numbers do not have 

infinitely large or infinitely small values relative to the natural numbers. 

 

Implications and Examples: 

1. Unbounded of Natural Numbers: 

The Archimedean property implies that the set of natural numbers N is not bounded above in the 

real numbers R. For any real number y, no matter how large, there exists a natural number n such 

that n>y. 

Example: Given       , there exists a natural number n (specifically,       ) such that 

      . 

2. Approximation of Real Numbers by Natural Numbers: 

For any positive real number x, the Archimedean property guarantees that we can find a natural 

number n such that      . This is useful in analysis for approximations and in constructing 

sequences that converge to a given limit. 
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Example:Given        , there exists a natural number n (specifically,       ) such that 

         . 

3. Denseness of Rational Numbers: 

The rational numbers are dense in the real numbers as a result of the Archimedean condition. 

This indicates that there exists a rational number that lies between any two real numbers. The 

property helps to construct rational approximations to any real number. 

Example: For any real numbers a and b with   b,  a rational number q:    b. 

Proof of the Archimedean Property: 

Here is a simple proof of the Archimedean property: 

Assume for contradiction that the Archimedean property is false.  

Then there exist positive real numbers x and y such that for all natural numbers n,     . 

Consider the sequence {xy}.  

According to our assumption, for all    ,     .  

This implies that xy is an upper bound for the natural numbers. 

However, the set of natural numbers N has no upper bound in the real numbers (by definition 

1.2).  

This contradiction implies that our initial assumption must be false, and thus the Archimedean 

property holds. 

 

1.5 Supremum, Infimum, and Completeness: 

Supremum (Least Upper Bound-LUB): 

The sup.of a set S of real numbers is the fewest real number that is  to every element of S. 

If S is bounded above, the supremum exists and is unique. 

Notation: If S is a set, then supS denotes the supremum of S. 

Example: Consider the set               The supremum of S is 1, since 1 is the 

smallest number that is  every element of S. 

 

Infimum (Greatest Lower Bound-GLB): 

The inf. of a set S of real numbers is the biggest real number that is  every element of S. 

If S is bounded below, the infimum exists and is unique. 
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Notation: If S is a set, then infS denotes the infimum of S. 

Example: Consider the set               The infimum of S is 0, since 0 is the largest 

number that is less than or equal to every element of S. 

 

Properties of Supremum and Infimum: 

1. Existence: If a set     is non-empty and bounded above, then supS exists. Similarly, if S is 

non-empty and bounded below, then infS exists. 

2. Uniqueness: The supremum and infimum of a set, if they exist, are unique. 

3. Order: For any non-empty set S that is bounded above, supS is such that: 

      for all     

For any    , there exists an     such that sup              

4. Duality: The infimum of a set S is the negative of the supremum of the set −S, and vice versa. 

If            then            and sup          . 

 

Completeness Property: 

The completeness property of the real numbers, also known as the LUB Property, states that 

every nonempty subset of R that is bounded above has a sup.in R. 

If     is non-empty and bounded above, then       . 

Conversely, if     is non-empty and bounded below, then       . 

 

Importance in Analysis: 

1. Existence of Limits: 

The completeness property is crucial for the existence of limits. It guarantees that bounded 

monotone sequences converge. 

Example: If {an} is a sequence that is bounded and increasing, then                 

    . 

 

2. Interchange of Supremum and Limit: 

For a bounded sequence     ,                            ensures the 

interchangeability of limit superior and supremum. 
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3. Real Analysis: 

Many theorems in real analysis rely on the completeness of R. For example, the Bolzano-

Weierstrass theorem status that every bounded sequence in R has a convergent subsequence. 

4. Topology: 

The completeness of R underpins the structure of metric spaces, particularly in defining 

completeness for these spaces. 

 

Examples and Exercises: 

Example: Find the supremum and infimum of the set                

Solution: The supremum of S is 5, and the infimum of S is 2. 

 

1.6 Summary: 

By the end of an "Introduction to Real Numbers" course, students should have a solid 

understanding of the real number system, be able to perform and understand various operations 

with real numbers, and apply these concepts to solve both abstract mathematical problems and 

practical real-world scenarios. These learning objectives ensure that students build a strong 

foundation in real numbers, which is essential for further studies in mathematics and related 

disciplines. 

 

1.7 Keywords: 

 Real Number System 

 Arithmetic, Order, Algebric properties 

 Decimals and factors 

 Supremum and Infimum 

 

1.8 Self-Assessment questions: 

1. Define a real number. 

2. What is the difference between rational and irrational numbers? 
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3. Provide three examples of irrational numbers. 

4. Explain the closure property of real numbers. 

5. What is the associative property? Give an example using real numbers. 

6. State the distributive property and provide an example. 

7. Simplify the expression: 5√3 + 2√3. 

8. Evaluate the expression: (2/3) / (4/5). 

9. Plot the following numbers on a number line: -2, 0, 3.5, √2. 

 

1.9 Case Study: 

1. How did the discovery of irrational numbers influence the development of mathematics? 

2. In what ways do real numbers appear in everyday life? Provide examples. 

3. Discuss the importance of the properties of real numbers in ensuring the consistency of 

mathematical operations. 

4. Create a real-world problem that involves real numbers and solve it, explaining each step. 

 

1.10 References: 

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson. 

 Trench, W. F. (2013). Introduction to Real Analysis. United Kingdom: Prentice Hall/Pearson 

Education. 
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UNIT - 2 

Continuity and Uniform Continuity 

 

Learning Objectives: 

 Understand the Definition of Continuity at a Point 

 Recognize Continuous Functions 

 Understand and use of Weierstrass‟s theorem 

 Understand the topology and Metric spaces 

 

Structure: 

2.1 Understanding continuity 

2.2 Uniform continuity 

2.3 Metric spaces and their topology 

2.4 Weierstrass‟s theorem 

2.5 Continuity of functions in metric spaces 

2.6 Summary 

2.7 Keywords 

2.8 Self-Assessment questions 

2.9 Case Study 

2.10 References 
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2.1 Understanding Continuity: 

Definition: A function         is continuous at a point c in its domain if, for every    , 

 a     such that               whenever        . 

 

Key Points: 

 A function is continuous if it doesn't have any breaks, jumps, or holes in its graph. 

 Continuity at a point means that small changes in the input lead to small changes in the 

output. 

 Continuous functions preserve limits:                . 

 

2.2 Uniform Continuity: 

Definition 2.1 

A function       defined on a subset A of the real numbers R is said to be uniformly 

continuous if for every    ,  a    :      , 

                         . 

 

Key Points: 

 Uniform continuity is a stronger condition than continuity. It requires that the choice of δ 

works uniformly for all points in the domain. 

 While continuity focuses on the behavior around individual points, uniform continuity 

considers the behavior over the entire domain simultaneously. 

 Uniformly continuous functions can "control" oscillations and ensure that the function doesn't 

"vary too much" across the entire domain. 

 

Differences between Continuity and Uniform Continuity: 

1. Existence of δ: 

For continuity, δ may depend on both ϵ and c. 

For uniform continuity, δ must work for all points simultaneously and doesn't depend on any 

particular point. 
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2. Local vs. Global: 

Continuity focuses on the behavior of a function at individual points, considering local 

neighborhoods. 

Uniform continuity considers the behavior of a function across the entire domain, providing a 

global control on its variations. 

3. Preservation of Cauchy Sequences: 

Uniform continuity preserves Cauchy sequences. If a function is uniformly continuous on a 

set, then it maps Cauchy sequences to Cauchy sequences. 

 

Example: 

Consider the function          defined on the interval        

      is continuous but not uniformly continuous on        

 While      is continuous at each point in its domain, it exhibits unbounded oscillations as x 

approaches 0, making it impossible to find a single δ that works uniformly for the entire 

interval. 

 

2.3 Metric spaces and their topology: 

Definition 2.2 

A metric space is a pair       where: 

  is a set. 

         is a metric on  , satisfying the next properties for all        : 

1. Non-negativity:          and         iff   . 

2. Symmetry:                

3. Triangle Inequality:                     . 

 

Examples: 

1. Euclidean Space: 

 Set: R
n
. 

 Metric: The Euclidean distance 

       √                             

               and            
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2. Discrete Metric Space: 

 Set: Any set  . 

 Metric:  

 

 

Topology of Metric Spaces: 

Open Sets: 

 A set U in a metric space X is open if, for every point x in U, there exists a positive real 

number r such that the open ball        is contained in U. 

 Open sets are the basic building blocks of the topology of a metric space. 

 

Closed Sets: 

 A set F in a metric space X is closed if its complement     is open. 

 Closed sets contain all their limit points. 

 

Interior, Boundary, and Closure: 

 The interior of a set A in X, indicated by         is the largest open set contained in A. 

 The boundary of A, indicatedby   , is the set of points in X that are neither in        nor in 

the complement of A. 

 The closure of A, denoted by ̅, is the union of A and its boundary. 

 

Convergence: 

A function       defined on a subset A of the real numbers R is said to be uniformly 

continuous if for every    ,  a     :      , 

                         . 
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Importance in Analysis: 

1. Generalization of Euclidean Spaces: 

Metric spaces provide a general framework that extends the notion of distance and 

convergence beyond Euclidean spaces. 

2. Topology and Continuity: 

The topology induced by a metric space plays a crucial role in defining continuity, open sets, 

and closed sets, providing a foundation for topological concepts. 

3. Convergence and Completeness: 

Understanding convergence and completeness in metric spaces is fundamental for analyzing 

the behavior of sequences and series, as well as for proving the existence and uniqueness of 

solutions to differential equations. 

 

Example: 

Consider the metric space        where             is the standard Euclidean distance 

function. 

 The open interval       in R is an open set in this metric space. 

 The set       is closed, as its complement         is open. 

 The sequence       converges to 0 in        demonstrating convergence in this metric space. 

 

2.4 Weierstrass’s theorem: 

Weierstrass's Theorem Statement:   

Let   be a continuous function defined on a closed interval        Then for every   , there 

exists a polynomial      such that 

                       . 

 

Proof 

Step 1: Existence of Supremum and Infimum 

Since f is continuous on the closed interval [a,b], it is bounded on this interval. By the Extreme 

Value Theorem, f achieves its supremum and infimum on [a,b]. Let M be the supremum and m 

be the infimumoff on [a,b]. 
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Step 2: Attainment of Maximum 

We aim to show that there exists a point c in [a,b] such that       , the supremum of f on 

[a,b]. 

By the definition of supremum, for every positive integer n, there exists a point    in [a,b] such 

that   
 

 
        . 

Science [a, b] is a closed and bounded interval, by the Bolzano-Weierstrass theorem,  the 

sequence {xn} has a convergent subsequence {   
} that converges to some point in [a, b]. 

Since f is continuous, we have: 

           
       

By the squeeze theorem: 

        
 

  
               

          

Thus,       , and f attains its maximum at c on [a,b]. 

 

Step 3: Attainment of Minimum 

Similarly, we aim to show that there exists a point d in      such that       , the infimum of 

f on      . 

Using a similar argument as in Step 2, we can show that there exists a point d in      such that 

f(d)=m, and thus f attains its minimum at d on     . 

Conclusion: 

Since f attains its maximum at c and its minimum at don      , Weierstrass's theorem is proved. 

 

2.5 Continuity of functions in metric spaces: 

In the context of metric spaces, the notion of continuity for functions is defined analogously to 

that in real analysis. Let        and        be metric spaces, and let       be a function. 

Definition 2.3  

Let        and       be metric spaces. A function       is said to be continuous at a point 

     if for every    , there exists a    such that for all    , 

                               . 
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Key Points: 

 Epsilon-Delta Definition: The definition of continuity in metric spaces mirrors that of real 

analysis but replaces the absolute value with the metric distance function dY in the codomain. 

 Intuition: A function f is continuous if small changes in the input x result in small changes in 

the output f(x), as measured by the metric distance dY. 

 Sequential Definition: Alternatively, f is continuous at    if, for every sequence {   in X 

converging to   , the sequence {f(  )} converges to f(  ) in Y. 

 Composition of Continuous Functions: If        and       are continuous functions 

between metric spaces, then their composition         is also continuous. 

 Continuity and Open Sets: A function f is continuous iff the pre-image of every open set in Y 

is an open set in X. 

 

Importance in Analysis: 

1. Topology: Continuity is a fundamental concept in topology, as it defines the relationship 

between the topologies of the domain and codomain of a function. 

2. Convergence: Continuous functions preserve convergence, allowing for the analysis of 

sequences and series in metric spaces. 

3. Applications: Continuity plays a crucial role in various fields such as optimization, 

differential equations, and dynamical systems, where understanding the behavior of functions 

is essential. 

 

Example: 

Considering the function       classify by f        . 

 This function is continuous everywhere on R with respect to the standard Euclidean metric. 

 Given any    , if we choose      , then for any    in R, if         , then f    

                                    

 Thus, f is continuous on R. 
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2.6 Summary: 

Continuity and uniform continuity are fundamental concepts in mathematical analysis that 

describe how functions behave with respect to small changes in their inputs. Continuity at a 

point ensures the function's output changes smoothly as the input changes. Uniform continuity 

is a stronger condition that requires this smooth change to be consistent across the entire 

domain. These concepts are essential for understanding more advanced topics in calculus and 

real analysis, including integration, differentiation, and the behavior of sequences and series. 

 

2.7 Keywords: 

 Continuous Functions 

 Uniform Continuity 

 Weierstrass's Theorem 

 Metric Space 

 Euclidean space 

 Subsequence 

 

2.8 Self-Assessment questions: 

1. Provide an example of a metric space that is not Euclidean space. 

2. Provide an example of a metric space that is not Euclidean space. 

3. Prove that a function is continuous iff the pre-image of every open set is open. 

4. Give an example of a metric space that is not complete. 

 

2.9 Case Study: 

Consider the set of all continuous functions on the interval [0,1], denoted as         . We define 

a metric ddd on this space using the supremum norm: 

                                  . 

Here, f and g are elements of         . 

 

2.10 References: 

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson. 

 Trench, W. F. (2013). Introduction to Real Analysis. United Kingdom: Prentice Hall/Pearson 

Education 
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UNIT-3 

Compactness and Connectedness 

 

Learning Objectives: 

 Understand the Definition of Compactness 

 Explore Properties of Compact Sets 

 Understand the Definition of Connectedness 

 Explore Properties of Connected Sets 

 

Structure: 

3.1 Exploring compact sets 

3.2 Connectedness in metric spaces 

3.3 Discontinuities in functions 

3.4 Monotonic functions 

3.5 Summary 

3.6 Keywords 

3.7 Self-Assessment questions 

3.8 Case Study 

3.9 References 
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3.1 Exploring compact sets: 

In the realm of topology and analysis, understanding compact sets is pivotal due to their rich 

properties and implications in various theorems. Let's delve into the concept of compact sets. 

 

Definition 3.1 

A set K in a metric space X is said to be compact if every open cover of K has a finite sub cover. 

Or for any collection of open sets      such that      , there exists a finite subset 

    
    

      
  such that       

    
. 

 

Key Properties: 

1. Closed and Bounded: In Euclidean spaces, compact sets are closed and bounded. This 

property is known as the Heine-Borel theorem. 

2. Finite Sub cover Property: This is the defining property of compact sets. No matter how finely 

we cover a compact set with open sets, we can always extract a finite sub cover. 

3. Compactness Implies Sequential Compactness: Every sequence in a compact set has a 

convergent subsequence that converges to a point in the set. 

4. Continuous Image of Compact Sets: The image of a compact set under a continuous function 

is compact. This property is known as the continuity theorem for compact sets. 

5. Product of Compact Sets: The Cartesian product of finitely many compact sets is compact. 

This property is known as the product theorem for compact sets. 

 

Importance in Analysis: 

1. Existence of Extrema: Compactness is crucial for proving the existence of maximum and 

minimum values of continuous functions defined on closed intervals. 

2. Convergence: Compact sets facilitate the study of convergence in various contexts, such as 

sequences, series, and functions. 

3. Topology: Compact sets play a central role in topology, serving as a bridge between local and 

global properties of spaces. 

4. Functional Analysis: Compact sets are extensively used in functional analysis, particularly in 

the study of operator theory, spectral theory, and Banach spaces. 
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Example: 

Consider the closed interval [0,1] in the real line R. 

 This set is compact in R according to the Heine-Borel theorem. 

 Any open cover of [0,1] can be reduced to a finite sub cover, demonstrating its compactness. 

 

3.2Connectedness in metric spaces: 

Connectedness is a fundamental concept in topology that characterizes the "wholeness" or 

"integrity" of a space. In the context of metric spaces, connectedness plays a crucial role in 

understanding the structure and behaviour of sets. Let's explore connectedness in metric spaces. 

 

Definition 3.2  

If there is no way to split a metric space X into two disjoint non-empty open sets, then the space 

is said to be linked. The empty set and space X are the only subsets of X that are both open and 

closed, according to formal definitions of connectedness. 

 

Key Properties: 

1. Connected Sets: A subset A of a metric space X is connected if the subspace A is connected 

with respect to the induced metric topology. 

2. Intermediate Value Property: Connectedness is closely related to the intermediate value 

property. If       is a continuous function defined on a connected metric space X, then f 

takes on all intermediate values between any two given values in its range. 

3. Union of Connected Sets: The union of a collection of connected sets that intersect pairwise at 

least at one point is also connected. 

 

Importance in Analysis: 

1. Topological Characterization: Connectedness provides a fundamental topological property 

that helps classify spaces into connected and disconnected ones. 

2. Continuity and Path-connectedness: Connectedness is intimately linked with the continuity 

of functions and the existence of paths between points in a space. 
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3. Intermediate Value Theorem: The intermediate value property, a consequence of 

connectedness, underpins many results in real analysis, including the intermediate value 

theorem. 

Example: 

Consider the real line R with the standard Euclidean metric. 

 R is a connected metric space. Any attempt to divide R into two disjoint non-empty open sets 

would fail, as R is an unbroken continuum. 

 Any interval (a,b) in R is also connected. This follows from the fact that any attempt to split 

the interval into disjoint non-empty open sets would result in one of the sets being empty. 

 

3.3 Discontinuities in functions: 

Discontinuities in functions refer to points where the function fails to exhibit continuity. 

Understanding the nature of discontinuities is crucial in analysis as it provides insights into the 

behaviour of functions and their limits. Let's explore the different types of discontinuities that 

can occur in functions defined on metric spaces. 

 

Types of Discontinuities: 

1. Point Discontinuity: A function       has a point discontinuity at a point    in the 

domain if f is not continuous at    but is continuous at all other points in the neighborhood of 

    

2. Jump Discontinuity: A function f:X→Y has a jump discontinuity at a point    in the domain 

if the one-sided limits       
      and         

      exist but are not equal. 

3. Removable Discontinuity: A function       has a removable discontinuity at a point    

in the domain if the limit       
       exist, but f(  ) does not equal this limit. 

4. Infinite Discontinuity: A function f:X→Y has an infinite discontinuity at a point    in the 

domain if at least one of the one-sided limits         
      or         

     is infinite. 

5. Oscillatory Discontinuity: A function       has an oscillatory discontinuity at a point 

  in the domain if f oscillates infinitely near   , making it impossible to assign a well-defined 

limit. 
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3.4 Monotonic functions: 

Monotonic functions are a class of functions that exhibit a consistent trend in their behavior: they 

either consistently increase or consistently decrease over their entire domain. Understanding 

monotonic functions is essential in analysis, optimization, and various other fields. Let's explore 

them further. 

Definition 3.3  

A function       defined on a set     is said to be: 

1. Monotonically Increasing: If for all      with    , we have          . 

2. Monotonically Decreasing: If for all      with    , we have f          . 

                                                         

Example: 

 The identity function       on R. 

 The exponential function f(x)=e
x
 on its entire domain. 

 The negative identity function        on R. 

 The reciprocal function f(x)=1/x on its domain (−∞,0). 

 

3.5 Summary: 

Understanding the properties and interplay between connected and compact sets is crucial for 

many areas of mathematics, including analysis, topology, and geometry. They provide powerful 

tools for analyzing the structure and behavior of spaces and functions. 

 

3.6 Keywords: 

 Connected Sets 

 Compact Sets 

 Relation between Connected and Compact sets 

 

3.7 Self-Assessment Questions: 

1. Explain why the interval [0,1] in R is a connected set. 

2. Explain why the interval [0,1] in R is a connected set. 

3. Define a compact set in a metric space. 

4. Provide an example of a set that R is not compact. 

5. State the theorem that every disconnected set in R is not compact. 
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3.8 Case Study: 

The connectedness of [0,1] can be established using the Intermediate Value Theorem. Suppose 

          is a continuous function. If there exist           such that              then 

by IVT  (Intermediate Value Theorem), there exists         such that      c. This 

demonstrates that f([0,1])is connected for any continuous function f on [0,1]. 

 

3.9 References: 
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Unit - 4 

Sequences and Series 

 

Learning Objectives: 

 Understand the Definition of a Sequence 

 Convergence and Divergence of Sequence 

 Understand the Cauchy sequences 

 Absolute and conditional convergence 

 

Structure: 

4.1 Convergence of sequences 

4.2 Cauchy sequences 

4.3 Upper and Lower limits 

4.4 Cauchy‟s general Principle of convergence 

4.5 Summary 

4.6 Keywords 

4.7 Self-Assessment questions 

4.8 Case Study 

4.9 References 
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4.1 Convergence of sequences: 

The convergence of sequences is a fundamental concept in analysis that describes the behaviour 

of a sequence as its terms approach a specific limit. Understanding convergence is crucial in 

various areas of mathematics, including calculus, real analysis, and functional analysis. Let's 

explore the convergence of sequences. 

Definition 4.1 

A sequence {  } in a metric space X is said to converge to a limit L if, for every positive real 

number ϵ, there exists a positive integer N such that for all    , the distance between    and L 

is less than ϵ. Symbolically, this is expressed as: 

     ∞  =L 

 

Key Concepts: 

1. Limit: The limit L is the value that the terms of the sequence approach as n tends to infinity. 

2. Convergence Criterion: When all terms in a series are within ϵ distance of the limit at any 

point beyond which the sequence exists, for any arbitrarily small positive integer ϵ, the 

sequence is said to be convergent. 

3. Divergence: If a sequence does not converge, it is said to diverge. Divergence can occur in 

various forms, such as unboundedness, oscillation, or failure to approach any specific value. 

4. Limit Notation: Convergence is often denoted using the limit notation         =L, where L 

is the limit of the sequence. 

 

Example: 

This sequence converges to 0 as n tends to infinity, as for any ϵ>0, we can choose N such that 

1/N<ϵ for all      

 

4.2 Cauchy sequences: 

Cauchy sequences are an important concept in real analysis and the theory of metric spaces. 

They represent a specific type of sequence where the terms become arbitrarily close to each other 

as the sequence progresses. Let's explore Cauchy sequences further. 
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Definition 4.2  

A sequence {  } in a metric space X is called a Cauchy sequence if, “for every positive real 

number ϵ, there exists a positive integer N such that for all m,n≥N”, the distance between    and 

   is less than ϵ. Symbolically, this is expressed as: 

for all          such that             for all      . 

 

Example: 

Consider the sequence {  }={
 

 
} in the real numbers. 

 This sequence is a Cauchy sequence because for any ϵ>0, we can choose N such that 
 

 

−
 

 
   for all      . 

 Alternatively, consider the sequence         
 

    This sequence is also a Cauchy 

sequence because the terms approach 1 as n tends to infinity. 

 

4.3 Upper and Lower limits: 

Upper and lower limits, also known as the supremum and infimum, respectively, play a crucial 

role in analyzing the behaviour of sequences and sets, particularly in real analysis and the theory 

of metric spaces. Let's explore upper and lower limits further. 

 

Upper Limit (Supremum): 

Any real number that is smaller than or equal to every element in a set „S‟ of real numbers is its 

supremum, or upper bound. It's represented by sup(S).  

Formally: 

sup(S)=smallest x such that x≥s for all s S 

 

Lower Limit (Infimum): 

For each set S of real numbers, the greatest real number less than or equal to all of S's elements is 

its lower limit, also known as its infimum. It's represented by inf(S). 

Formally: 

inf(S)=largest x such that x≤s for all s S 
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Example: 

Consider the set      
 

 
      of real numbers. 

 The supremum of S is sup(S)=1 because 1 is the smallest real number greater than or equal to 

all elements of S. 

 The infimum of S is inf(S)=0 because 0 is the largest real number less than or equal to all 

elements of S. 

 

4.4 Cauchy’s general Principle of convergence: 

Cauchy's General Principle of Convergence, also known simply as Cauchy's Convergence 

Criterion, is a fundamental concept in real analysis. It provides a criterion for determining when 

a sequence converges based on the sequence itself, without reference to a specific limit. Let's 

explore Cauchy's Convergence Criterion further. 

 

Definition 4.3  

Cauchy's Convergence Criterion states that a sequence {  } in a metric space X converges if and 

only if, for every positive real number ϵ, there exists a positive integer N such that for all m,n≥N, 

the distance between   and   is less than ϵ. Symbolically: 

The sequence {  } converges            such that d(  ,  )<ϵ for all       

Example 

Consider the sequence {  }={1/n} in the real numbers. 

This sequence satisfies Cauchy's Convergence Criterion because for any ϵ>0, we can choose N 

such that 1/m-1/n<ϵ for all m,n ≥N. 

Squeeze Theorem (or Sandwich Theorem): 

Theorem: 

Let {an}, {bn}, and {cn} be sequences of real numbers. If there exists an integer Nsuch that for all 

n ≥ N, an≤bn≤cn, and if limn→∞an= limn→∞cn=L then limn→∞bn= L. 
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Proof: 

By the definition of the limit, for every ϵ>0, there exists a positive integer N1such that for all 

n≥N1 ,  

 an−L <ϵ. 

This means L−ϵ<an<L+ϵ. 

Similarly, for every ϵ> 0, there exists a positive integer N2 such that for all n≥N2,  

 cn−L <ϵ. 

 This means L−ϵ<cn<L+ϵ. 

Let N0=max(N,N1,N2). For all n≥N0, 

L−ϵ<an≤bn≤cn<L+ϵ. 

Therefore, for all n≥N0, 

L−ϵ<bn<L+ϵ,  

 Which implies  bn−L <ϵ. 

 

4.5 Summary: 

Understanding sequences and series, their properties, and convergence criteria are crucial for 

advanced studies in mathematics and its applications in science and engineering. 

 

4.6 Keywords: 

 Sequences 

 Series 

 Convergence Tests 

 

4.7 Self-Assessment Questions: 

1. What does it mean for a sequence {an} to converge to a limit L? Provide the formal definition. 

2. Determine whether the sequence {bn}=1/n converges or diverges. If it converges, find its limit. 

3. Is every bounded sequence convergent? Provide a justification for your answer. 

4. Given two convergent sequences {an} and {bn} with limits A and B respectively, what is the 

limit of the sequence {cn} where cn=an+bn? 
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5. Use the Squeeze Theorem to determine the limit of the sequence {sinn/n}. 

 

4.8 Case Study: 

A meteorologist is studying the average monthly temperatures over several years to predict 

future climate patterns. They have collected temperature data Tn for a specific location over n 

months. The goal is to determine if the average temperature sequence converges, which would 

imply a stable long-term climate trend, or if it shows signs of divergence, indicating possible 

climate change. 

 

Question: 

Suppose the temperature data for the past 60 months (5 years) is as follows: 

T={30.5,31.0,30.7,30.9,31.2,30.8,30.6,31.0,31.1,30.9,…,31.0} 

To analyze the trend, we construct the sequence of the average temperature {An}, where An  is 

the average temperature over the first n months. 

   
 

 
∑  

 

   

 

 

4.9 References: 
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Unit – 5 

Bounded Sequence 

 

Learning Objective 

 Understand the Definition and Concept of Bounded. 

 Identify whether a given sequence is bounded by examining its terms. 

 Understand how the sum, difference, product, and quotient of bounded sequences are 

bounded. 

Structure 

5.1 Bounded Sequence 

5.2 Convergent Sequences  

5.3 Summary 

5.4 Keywords 

5.5 Self Assessment 

5.6 Case Study 

5.7 References 
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5.1 Bounded Sequence 

A sequence (an) is a function a:N→R where a(n)=an. A sequence can be described as an ordered 

list of real numbers indexed by natural numbers. 

A sequence (an) is said to be bounded if there exists a real number     such that for all n   N 

, the absolute value of the sequence's terms is less than or equal to M. Formally, “(an) is bounded 

if there exists M>0” such that: 

        for all        

In other words, both the sequence and its negative are bounded above. There are two key types 

of bounded sequences: 

1. Bounded Above: “A sequence (an) is bounded above if there exists a real number B such 

that an ≤ B”. 

 

2. Bounded Below: “A sequence (an) is bounded below if there exists a real number C such 

that an ≥ C for all n   N”. 

 

A sequence that is both bounded above and bounded below is simply referred to as bounded. 

examples of sequences that are bounded above and bounded below: 

1. Bounded Above Sequence: 

   
 

   
         

Solution: This sequence  
 

   
    
  is bounded above because for all    ,. Specifically, 

 

   
 

approaches 1 as n increases, but it never reaches or exceeds 1.  

Therefore, 1 is an upper bound for this sequence. 

2. Bounded Below Sequence: 

         

Solution: The sequence      alternates between -1 and 1 as n varies.  

Hence,           
  is bounded below by -1 because for every n,          when n is odd. 

Therefore, -1 is a lower bound for this sequence. 
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Theorem 1: Every convergent sequence is bounded. 

Proof: Let (an) be a sequence that converges to a limit L. By the definition of convergence, for 

every ϵ>0, there exists a natural number N such that for all n ≥ N, 

 

Choose ϵ=1. Then there exists a natural number N such that for all n≥N, 

 

This implies that for all n≥N, 

 

Adding L to all parts of the inequality, we get: 

|L−1| < an< |L+1|. 

Therefore, for n≥N, 

 an  ≤ max ( L−1 , L+1 ).. 

Let M1=max ( L−1 , L+1 ). This M1 bounds all terms of the sequence an forn ≥ N. 

For n < N, the terms a1,a2,…,aN−1 are a finite number of terms. Let 

M2=max ( a1 , a2 ,…, aN−1 ). 

Now, define 

M=max (M1,M2). 

Since M1 bounds all terms an for n ≥ N and M2 bounds the finite number of terms a1,a2,…,aN−1, 

M will be an upper bound for the absolute values of all terms of the sequence (an). 

Thus, for all n   N, 

 an  ≤ M. 

Therefore, the sequence (an) is bounded.  
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Hence we can say that every sequence that converges has a limit. This is because convergence 

indicates that the sequence's terms approach the limit arbitrarily, indicating that the existence of a 

bound for each term in the sequence is required. 

Example 1: Consider the sequence 

  

   
   

 
         

Solution: This sequence  
   

 
    
  is bounded above because for all    , 

   

 
   

 

 
    

Therefore, 2 is an upper bound for this sequence. 

 

5.2 Convergent Sequences  

Convergence of a real number sequence (sn) to real number s is defined as follows:  

 

If this is the case, we write s = limn→∞ sn or sn → s, denoting that (sn) is a convergence 

sequence with s as its limit. We refer to (sn) as a divergent sequence if it does not converge. 

First, we demonstrate that a single sequence (sn) cannot have two distinct bounds. Assume that 

sn → t and sn → s. Assume ε > 0. Consequently, ε / 2 > 0. Since sn → s, by definition, for n > 

N1, |sn − s| < ε / 2 exists in N1. If n > N2, then by definition, N2   N such that |sn − t| < ε / 2 

because sn → t. Because the N originating from the two bounds might not be the same, we 

utilize N1 and N2 in these two assertions. N = max{N1, N2}, please. In the event that n > N, 

 

For any ε > 0, |s−t| < ε now holds. After that, we determine that |s−t| = 0 (because if |s−t| > 0, we 

would have a contradiction, thus we would choose ε = |s − t|). Since s = t, the uniqueness is 

maintained. 
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Example 2: We have 1 / n → 0.  

Proof: Let ε > 0. By Archimedean property, there is N   N such that 1 / N < ε. If n > N, then 

 

1. Limit of a Sequence 

If (an) is a sequence of real numbers, we say that the sequence converges to the limit L if for 

every ϵ> 0, there exists a natural number N such that for all n≥N, 

 an−L < ϵ. 

We write this as: 

limn→∞ an=L. 

2. Limit of a Function 

If f(x) is a function of a real variable, we say that the limit of f(x) as x approaches c is L, written 

as limx→c f(x) = L , if for every ϵ > 0, there exists δ>0 such that for all x with 0 < x−c < δ, 

 f(x)−L <ϵ. 

Limit Laws 

If limn→∞ an = A andlimn→∞bn = B, then the following hold: 

 Sum Rule: limn→∞ (an + bn)=A+B 

 Difference Rule: limn→∞ (an − bn)=A−B 

 Product Rule: limn→∞(an⋅bn)=A⋅B 

 Quotient Rule: limn→∞(an / bn)=A / B, provided B≠0 

 Scalar Multiplication: limn→∞(c⋅an) = c⋅A, for any real number c 

 

5.3 Summary 

A bounded sequence is a sequence of numbers {an} where there exists a real number M such 

that  an ≤M for all n. This means the sequence‟s terms do not grow indefinitely in either 

direction. Every convergent sequence is bounded. The sum, difference, and product of bounded 
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sequences are also bounded. Identifying and proving boundedness involves finding appropriate 

bounds and applying these concepts to various mathematical problems. 

 

5.4 Keywords 

 Supremum 

 Infimum 

 Limit Superior (lim sup) 

 Limit Inferior (liminf) 

 Absolute Value 

 Upper Bound 

 Lower Bound 

 

5.5 Self Assessment 

1. What is the formal definition of a bounded sequence, and how can you determine if the 

sequence           is bounded? 

2. Prove that the sequence    
     

 
 is bounded. 

3. Explain why every convergent sequence is bounded and provide an example to 

illustrate this property. 

4. Compare and contrast a bounded sequence and an unbounded sequence, giving an 

example of each and explaining the key differences. 

5. How can the concept of bounded sequences be applied in real-world scenarios or in 

other areas of mathematics, such as in solving differential equations or in the context of 

functional analysis? 

 

5.6 Case Study 

A scientist is modeling the population of a species in a confined habitat. They propose that the 

population at time n,    , follows the sequence     
    

       
. 

Questions: 

1. Determine if the population sequence {   } is bounded. 

2. What are the implications of the sequence being bounded in terms of population control? 
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3. How does the bounded nature of the sequence influence long-term predictions for the 

species‟ population? 

 

5.7 References 

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson. 
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Unit - 6 

Monotonic sequence 

 

Learning Objective 

 Understand the Definition and Concept of Monotonic Sequences. 

 Identify whether a given sequence is increasing, decreasing, non-increasing, or non-

decreasing by examining its terms. 

 Understand that every bounded monotonic sequence converges and be able to apply this 

theorem to various sequences. 

 

Structure 

6.1 Introduction to Monotonic Sequence 

6.2 Monotonic sequence 

6.3 The monotone Convergence Theorem 

6.4 Summary 

6.5 Keywords 

6.6 Self Assessment 

6.7 Case Study 

6.8 References 
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6.1 Introduction to Monotonic Sequence 

Monotonicity and boundedness are two very strong characteristics in the context of testing 

convergence and divergence of real sequences. We have a very important theorem, namely, the 

monotone convergence theorem, important in the sense of its usefulness and application, which 

not only ensures us that a bounded monotonic sequence of real numbers is always convergent, 

but also unambiguously points out the fact that such a sequence always converges to its lub (least 

upper bound or supremum)/glb (greatest lower bound or infimum) depending on the 

monotonicity nature of the particular sequence. So, it is considered as a strong tool of analysis 

for handling the problem of testing convergence/divergence of monotonic sequences.  

In this discourse, we will mainly discuss about monotonic sequences and the very useful 

monotonic convergence theorem in detail. We will also deal with some particular problems 

where monotone convergence theorem can be applied very efficiently. 

 

6.2 Monotonic sequence 

A monotonic sequence is a sequence of numbers that either consistently increases or consistently 

decreases as you move through the sequence. 

 

1. Monotonic Increasing Sequence: This occurs when each term in the sequence is greater than 

or equal to the previous one. Formally, for a sequence     

             

 

Example 1: 

Monotonic Increasing Sequence:               

 

In other words,  

A sequence    is monotonically increasing if         for all n. 

 

Example 2:            (each term is greater than or equal to the previous one). 

Strictly Increasing Sequence: 

A sequence    is strictly increasing if         for all n. 
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Example 3: 1,2,3,4,5,6 (each term is greater than the previous one). 

 

2. Monotonic Decreasing Sequence: This occurs when each term in the sequence is less than or 

equal to the previous one. Formally, for a sequence     

             

 

Example 4: 

Monotonic Decreasing Sequence:                     

In other words,  

A sequence    is monotonically decreasing if         for all n. 

Example 5: 5,4,4,3,2,1 (each term is less than or equal to the previous one). 

Strictly Decreasing Sequence: 

A sequence (an)(a_n)(an) is strictly decreasing if        for all n. 

Example 6: 6,5,4,3,2,1 (each term is less than the previous one). 

 

Properties of Monotonic Sequences 

 Boundedness: A monotonic sequence that is bounded above (for increasing sequences) 

or below (for decreasing sequences) will converge to a limit. 

 Convergence: Monotonic sequences are particularly important in the study of limits and 

convergence. If a monotonic sequence is bounded, it is guaranteed to converge to a finite 

limit. 

Example 7:Determine the sequence    
 

 
   is monotonic. 

Solution: To determine if the sequence    
 

 
  is monotonic, we need to check if it is either 

monotonically increasing or decreasing. Here's a detailed step-by-step solution: 

Step-by-Step Solution 

1. Comparison of Terms: 

To determine if the sequence is monotonic, compare consecutive terms    and     : 
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2. Determine the Relationship: 

We need to find the relationship between    and     . Specifically, we need to 

determine if         or        . 

        if and only if  
 

   
 

 

 
 

3. Simplify the Inequality: 

To simplify the inequality 
 

   
 

 

 
  

 

   
 

 

 
 

Since n and     are positive integers and      , taking the reciprocal of both sides 

(which reverses the inequality for positive numbers) gives: 
 

   
 

 

 
 

 

This inequality is true for all positive integers n. 

Hence, the inequality 
 

   
 

 

 
 holds for all n. Therefore, the sequence    

 

 
 is 

monotonically decreasing. 

 

6.3 The monotone Convergence Theorem 

Statement: A real monotonic sequence is convergent if and only if it is bounded. Further, if  

X=<xn>  is bounded and monotonic  

i) Increasing, then, lim<xn> = sup{xn : n}  

ii) Decreasing, then, lim<xn> = inf{ xn: n} 

Proof:  

We have already proved that a convergent sequence is always bounded. So, one part of the proof 

is already done. 

Conversely, let,  X=<xn> be bounded. Then there may arise two cases: (i) <xn> is monotonically 

increasing or (ii) X=<xn>  is monotonically decreasing. 

Case (i): Let <xn> be monotonically increasing.  

Now,  X=<xn> is bounded   MR s.t.xn M  nM .  

Then, by the completeness Property, the supremum x*=  sup{ xn:  n}   must belong to R.  

We now show that lim<xn>=x*=sup{xn:  n} 

Let  0 be arbitrary. Then, 
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Since,  X=<xn> is monotonic increasing, so 

 
Further, we have, 

 
 

Case (ii): Let <xn> be monotonically decreasing so that xn xn+1,   n. 

Now 

 

Then, by the completeness Property, the supremum x*=  sup{ xn:  n}   must belong to R. 

 

We now show that 

.  

Let  0  be arbitrary. Then, we have, 

 
 

Since,  X=<xn> is monotonic decreasing, so,  

 
Further, we have, 

 
 

 

Example 7: 

 
Solution 
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6.4 Summary 

A monotonic sequence is a sequence of numbers that is either entirely non-increasing or non-

decreasing. Specifically, an increasing sequence has        for all n, and a decreasing 

sequence has         for all n. Monotonic sequences exhibit consistent behavior, either 

rising or falling. A key property is that every bounded monotonic sequence converges to a 

limit, known as the Monotone Convergence Theorem. Identifying and proving monotonicity 

involves analyzing the terms' relationships. Monotonic sequences have applications in calculus, 

analysis, and real-world modeling, providing a foundation for understanding more complex 

mathematical concepts. 

6.5 Keywords 

 Monotonic 

 Sequence 

 Increasing 

 Decreasing 

 Non-increasing 

 Non-decreasing 
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 Monotone Convergence Theorem 

 Bounded 

 Unbounded 

 

6.6 Self Assessment 

1. What is the formal definition of a monotonic sequence, and how can you determine if 

the sequence      
 

 
 is monotonic? 

2. Prove that the sequence    
 

 
 is monotonic and determine whether it is increasing or 

decreasing. 

3. State and explain the Monotone Convergence Theorem. Provide an example of a 

bounded monotonic sequence and demonstrate how this theorem applies to it. 

4. Discuss the implications of a sequence being monotonic in a real-world context, such as 

predicting trends in financial markets or modeling population growth. Provide a specific 

example to illustrate your point. 

5. Given a monotonic sequence {   } that is bounded above, explain why it must 

converge. How would you go about finding its limit? Use the sequence      
 

 
 as 

an example in your explanation. 

 

6.7 Case Study 

An investment firm analyzes the performance of a stock over n days, where the daily closing 

price    follows the sequence        
 

 
. 

Questions: 

1. Determine if the sequence {  } is monotonic and classify its monotonicity. 

2. Discuss how the monotonic nature of the sequence influences the firm's decision-making 

process in terms of predicting the stock's future performance. 

3. How might the firm use mathematical tools related to monotonic sequences to enhance its 

investment strategies? 
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Unit -7 

Infinite Series 

 

Learning Objective 

 Understand the difference between absolute convergence (converges absolutely) and 

conditional convergence (converges conditionally but not absolutely). 

 Understand the implications of series rearrangement and conditions under which it 

preserves convergence. 

 Learn proof techniques related to series convergence and divergence. 

 

Structure 

7.1 Introduction to infinite Series 

7.2 Definition of an Infinite Series 

7.3 Necessary condition for convergence 

7.4 Summary 

7.5 Keywords 

7.6 Self Assessment 

7.7 Case Study 

7.8 References 
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7.1 Introduction to infinite Series 

Real numbers are defined as a sequence of function f: N→R, where N is a set of natural numbers 

and R is a set of real numbers. (f1,f2,...,fn,...) or 〈fn〉 can be used to define a series. Take a series, 

for instance. 

Convergent sequence: If there is a positive integer m that depends on ε and for which there is a 

given ε>0, then the sequence 〈fn〉 converges to a number l.  

.  

Then l is called the limit of the given sequence and we can write  

 
 

7.2 Definition of an Infinite Series 

An expression of the form  

 

is known as the infinite series of real numbers, where each    is a real number. It is denoted by 

An infinite series is one example. An infinite series' convergence Think of an endless chain. Let's 

clarify, and so on. The series so created is then referred to as the sequence of partial sums 

(S.O.P.S.) of the specified series. 

Convergent series: A series  

 

converges if <Sn> of its partial sums converges i.e. if  

 

exists. Also 

 

if then S is called as the sum of the given series .  

 

Divergent series: A series 

 

diverges if  <Sn> of its partial sums diverges i.e. if  
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Example 1: 

 
 

Solution: 

Let  

 
 

Case 1: r<1 

 
Since 

 
is finite so <Sn> converges and hence the given series converges.  

 

 

Case2: r>1 

Consider 

 
Since <Sn> diverges and hence the given series diverges. 

 

Case2: r=1 

Consider 

 
Since <Sn> diverges and hence the given series diverges. 

 

Positive term series 

A positive term series is an infinite series with all positive terms. 

p-series: An infinite series of the form  

 
is called p-series. If p>1 converges if and diverges if p<1. 
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For Examples 

 
 

7.3 Necessary condition for convergence: 

If an infinite series ∑   
 
   is convergent then         . However , converse need not be true. 

Proof: 

Consider <Sn> of partial sums of the series ∑   
 
   . 

As we know that 

 
Now 

 
Taking limit    , we get 

 

 
As ∑   

 
    is convergent sequence so <Sn> is also convergent. 

 
Substituting these values in  (1), we get         =0. 

 

To show that converse may not hold, let us consider the series 

 
Here  

 
 

But ∑
 

 
 
    is a divergent series (As p=1). 

Corollary : If           , then ∑   
 
    cannot converge.  

 

Example 2: Test the convergence of the series ∑    
 

 
 
   . 

Solution:  

Here 
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Hence the series is not convergent. 

 

Example 3: Test the convergence of the series  

 
Solution:  

Here 

 
Hence the series is not convergent. 

 

7.4 Summary 

Infinite series are sums of an infinite sequence of terms ∑   
 
   . Understanding centers on 

convergence criteria like the nth-term test, geometric series test, and ratio test. Series may 

converge absolutely, conditionally, or diverge. Properties include linearity and the ability to 

rearrange under specific conditions. Applications span calculus (Taylor series), physics 

(Fourier series), finance (compound interest), and beyond. Techniques involve manipulating 

series and utilizing computational tools for analysis. Advanced topics include power series and 

complex analysis applications. Mastery involves applying convergence tests, understanding 

series properties, and using them effectively in mathematical modeling and problem-solving. 

 

7.5 Keywords 

 Infinite Series 

 Convergence 

 Divergence 

 Summation 

 Partial Sum 

 Series 

 Power Series 

 Convergence Tests 
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7.6 Self Assessment 

1. Determine the convergence of the series ∑
 

  
 
   . Identify the convergence test 

applicable and justify your conclusion. 

2. Given the series ∑
     

 
 
   , find the sum of the series if it converges. Explain any 

conditions under which the series converges. 

3. In physics, the displacement of a vibrating string is modeled by the series 

∑
 

       
   

 
  

   where x is the position along the string and L is its length. Discuss the 

convergence of this series and its implications for understanding the vibration behavior 

of the string. 

4. Expand   into its Taylor series representation and determine the radius of convergence 

of the series. Explain how the Taylor series can be used to approximate    for different 

values of x. 

5. A bank offers an investment plan where 1000 dollars are invested today, and each 

subsequent year, the amount grows by 5% compounded annually. Represent the future 

value of the investment using an infinite series and calculate the total amount 

accumulated after 10 years. Interpret your result in terms of the convergence of the 

series and the growth of the investment. 

 

7.7 Case Study 

A mathematician studies the behavior of the alternating series ∑
       

  
 
   . 

Questions: 

1. Determine the convergence of the series using appropriate tests and justify your 

conclusion. 

2. Explain whether the series converges absolutely, conditionally, or diverges. 

3. How might the mathematician extend this analysis to study similar alternating series and 

their properties? 

 

7.8 References 
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Unit – 8 

Alternating Series 

 

Learning Objective 

 Understand when an alternating series converges conditionally and when it converges 

absolutely. 

 Explore methods for summing alternating series, including partial sums and convergence 

properties. 

 Utilize alternating series in mathematical models, such as Taylor series expansions and 

power series representations. 

 

Structure 

8.1 Introduction to Alternating Series 

8.2 Convergence of Alternating Series 

8.3 Summary 

8.4 Keywords 

8.5 Self Assessment 

8.6 Case Study 

8.7 References 
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8.1 Introduction to Alternating Series 

A series in which the words alternate between positive and negative signs is known as an 

alternating series. Alternating series are important in calculus and mathematical analysis because 

they help determine approximate values of sums and comprehend convergence features. 

Alternating Series 

An alternating series is a series where the terms alternate in sign. Mathematically, an alternating 

series can be written in the form: 

 
Definition : A series of the form  

where  for all n, is called an alternating series, 

because the terms alternate between positive and negative values. 

Example : 

 
 

8.2 Convergence of Alternating Series 

A famous result concerning alternating series is the Alternating Series Test (also known as the 

Leibniz Test). The test provides a criterion for determining the convergence of an alternating 

series. 

 

Alternating Series Test (Leibniz Test) 

An alternating series 
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Converges if and only if the subsequent two requirements are met: 

1. The sequence {an} is monotonically decreasing, i.e., an+1≤ an  for all n sufficiently large. 

2. The limit of the sequence {an} is zero, i.e., 

 

If both conditions are met, then the series converges. 

Example 1 

Consider the alternating harmonic series: 

 

1.The sequence       is monotonically decreasing since   for all n. 

2. The limit of the sequence  is zero, as  

Therefore, by the Alternating Series Test, the alternating harmonic series converges. 

 

Conditional Convergence 

A series that converges but does not converge absolutely is said to converge conditionally. The 

alternating harmonic series mentioned earlier is an example of a series that converges 

conditionally. 

The Alternating Series Test:The series   

 

converges if all three of the following three conditions are satisfied: 
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Example: The alternating series 

 
 

diverges. In this case   

 
We have    

 
By the test for divergence, the series diverges. 

 

 

8.3 Theorems on alternating Series 

Theorem 1: 

Statement: Let s be the sum of the alternating series   

 
and let sn be its nth partial sum. Suppose that    

 
for all n and   

 
Then  

 
Proof. We have 
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Theorem 2:  

Statement: (Leibniz Test) let 

 
be an alternating series such that 

 
Proof: Let us first look at the even partial sums  

we have 

 
and, in general, 

 

 

 
Now we check the inequality 
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we note that 

 
The sum between absolute value signs can be expressed in the form 

 
The absolute value indication above can be deleted since the decreasing value of a indicates that 

the total is greater than zero. One way to express the total is as 

 
This shows that the sum is   

 
Hence the inequality 

 
holds. Hence the theorem. 

 

Example 2: 

Show that the series is convergent. 

 
Solution: 

For the given series we have, 

 
Clearly, an> 0 and 

 

 
Hence  
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and therefore the series converges. 

 

Example  2:  

Use Ratio test to determine whether the following series are convergent. 

 
Solution : 

 (i) 

 
Hence it follows, from the Ratio Test that (i)  is convergent. 

 
 

Example 3: 

Test the convergence of the series whose general term is 
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Solution:  

 
Therefore series converges. 

 

Example 4: Examine whether the given series diverges, converges conditionally, or converges 

absolutely or not 

 

 
Solution:  

 
Because of its absolute convergence, the series is convergent. As an alternative, the lebeniz rule 

may be used to demonstrate the series' convergence. 

 

Example 5:Examine the convergence and divergence of the following series 
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Solution:  let  

 
Then both an and bn are positive  

 
Then  

 
and the series  

 
is convergent, the given series is convergent. 

 

Example 5: Using the comparison test or the limit comparison test, Find the convergence of the 

following series 

 
Solution:  

 
Since  
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n is divergent, we deduce, from the Limit Comparison Test, that 

 
ii) We use the Comparison Test. Since  

 

 
Since  

 
is convergent, we deduce, from the Comparison Test, that 

 
is convergent. 

 

8.3 Summary 

An alternating series is a series where terms alternate in sign, typically of the form 

∑            ∑        
 
   

 
   . Understanding focuses on the alternating series test 

(Leibniz's criterion) for convergence, which requires that terms decrease in absolute value and 

approach zero. Alternating series may converge conditionally or absolutely, with conditional 

convergence dependent on rearrangements. Applications include error estimation in numerical 

methods, series expansions in mathematics, and models in physics and finance. Mastery 

involves applying convergence criteria, manipulating series, and analyzing applications across 

disciplines. 

 

8.4 Keywords 

 Alternating Series 

 Leibniz's Criterion 

 Convergence 
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 Conditional Convergence 

 Absolute Convergence 

 Series 

 Summation 

 Rearrangement 

 

8.5 Self Assessment 

1. Consider the series∑         

  
 
   . Apply Leibniz's criterion to determine whether the 

series converges or diverges. Explain your reasoning. 

2. Given the alternating series ∑       

   
 
   , find the sum of the series if it converges. 

Discuss any conditions under which the series converges. 

3. In physics, a damped harmonic oscillator is described by the series 

∑
       

 
 
        

   

 
 , where T is the period of oscillation. Analyze the convergence of 

this series and its implications for understanding the oscillatory behavior of the system. 

4. A mathematician investigates the alternating series ∑       

  
 
   . Determine whether 

the series converges absolutely, conditionally, or diverges. Explain any implications for 

using this series in mathematical modeling. 

5. An engineer analyzes an alternating series representation of a signal in a digital 

communication system:∑
       

 
 
              , where f is the frequency of the signal. 

Discuss the conditions under which the series converges and how this analysis aids in 

signal processing applications. 

 

8.6 Case Study 

A mathematician explores the convergence of the alternating harmonic series ∑         

 
 
   . 

Questions: 

1. Determine whether the series converges conditionally or absolutely and justify your 

conclusion. 
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2. Discuss the historical significance of the alternating harmonic series in the development 

of mathematical analysis. 

3. How might the mathematician extend the analysis to other alternating series and their 

properties? 

 

8.7 References 
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Unit – 9 

Test for Convergence 

 

Learning Objective 

 Understand the ratio test and its application to determine convergence by examining the 

limit of the ratio of consecutive terms. 

 Analyze how rearranging terms in a series affects its convergence and how 

rearrangements can preserve or change convergence properties. 

 Develop the ability to analyze series convergence using multiple tests and determine the 

most appropriate test for a given series. 

 

Structure 

9.1 Necessary Conditions For Convergent Series 

9.2  Comparison Test 

9.3 D'alembert's Ratio Test 

9.4 Raabe's Test (Higher Ratio Test) 

9.5 Summary 

9.6 Keywords 

9.7 Self Assessment 

9.8 Case Study 

9.9 References 
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9.1 Necessary Conditions For Convergent Series 

For every convergent series  Σun, 

 

Solution: 

 

Corollary: Converse of the above theorem is not true. 

 

 

9.2  Comparison Test 

Consider two positive terms Σun, and Σvn, be such that 

 

 (finite number), then both series converge or diverge together. 

Proof: There exists a positive number ɛ, however small, such that 
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Case 1:Σun is divergent then 

 

Hence, Σun is also Convergent 

Case 2:Σvn is divergent then 

 

Hence, Σun is also divergent 

Example 1: Test the series for Convergence or divergence 

 

Solution: 
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Hence, Σun is also divergent. 

Example 2: Test whether the given series is convergent or not. 

 

Solution 

 

 

Since Σun, is also convergent. 

 

9.3 D'alembert's Ratio Test 

Statement:ConsiderΣun, is a positive term series such that  

 

(i) the series is convergent if k<1 

(ii) the series is divergent if k>1 

Example 3: Test for convergence the series whose nth term is n
2
/2

n
 

Solution 

 

Hence the Series is Convergent 

Example 4:Test for convergence the series whose nth term is 2
n
/n

3
 

Solution  
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Hence the series is divergent 

9.4 Raabe's Test (Higher Ratio Test) 

If Σun, is a positive term series such that 

 

the series is convergent if k>1 and  the series is divergent if k < 1. 

Proof: 

Case I. k >1 

Let p be such that k>p> 1 and compare the given series Σun, with Σ1/n
p
  which is convergent 

as p > 1. 

 

and k>p which is true as k>p>1; Σun, is convergent when k> 1 

Case II.k< 1 

Same steps as in Case 1. 

Example 4: Test whether the given series is convergent or not. 

 

Solution 
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(i) If x<1, Σun is convergent (ii) If x>1, Σun, is divergent (iii) If x=1, Test fails Let us apply 

Rabee's Test when x=1 

 

So the Series is Convergent 

 

9.5 Summary 

1. The test for convergence of positive term series assesses whether an infinite series 

∑   
 
   where     , converges or diverges. Methods include: 

2. Comparison Test: Compares with a known convergent or divergent series. 

3. Limit Comparison Test: Compares with a simpler series using limits. 

4. Integral Test: Relates convergence to an associated improper integral. 

5. Ratio Test: Analyzes convergence by evaluating the limit of the ratio of consecutive 

terms. 

 

9.6 Keywords 

 Series Convergence 

 Comparison Test 
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 Limit Comparison Test 

 Integral Test 

 Ratio Test 

 Convergence Criteria 

 Convergence Tests 

 

9.7 Self Assessment 

1. Use the comparison test to determine the convergence of the series ∑
 

    
 
   . Identify a 

suitable series for comparison and justify your conclusion. 

2. Apply the limit comparison test to analyze the convergence of ∑
  

    
 
   . Choose an 

appropriate series for comparison and explain the result. 

3. Evaluate the convergence of ∑
 

      
 
    using the integral test. Set up the 

corresponding improper integral, compute its value, and interpret the result. 

4. Use the ratio test to determine whether ∑
 

  
 
   converges or diverges. Show the steps 

involved in applying the ratio test and interpret the limit. 

5. An engineer models the decay of a vibrating system with the series ∑
   

 
 
   . Discuss 

the convergence of this series using a suitable convergence test and explain its 

relevance in engineering applications. 

 

9.8 Case Study 

A mathematician investigates the convergence of the series ∑
 

      
 
   . 

 

Questions: 

1. Use the ratio test to determine the convergence of the series. Show the steps involved in 

applying the ratio test and interpret the result. 

2. Discuss the relevance of the convergence result in mathematical modeling and its 

applications in real-world scenarios. 

3. How might the mathematician extend this analysis to other similar series and their 

properties? 

 

9.9 References 
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Unit – 10 

Cauchy’s Test 

 

Learning Objective: 

 Identify scenarios where the Cauchy nth root test is particularly useful and where it may not 

apply effectively. 

 Apply the Cauchy nth root test in mathematical models, such as power series representations 

and recursive sequences. 

 Understand how the test is used in scientific fields, such as physics (Fourier series) and 

engineering (signal processing), to model and analyze real-world phenomena. 

 

Structure 

10.1 Cauchy's Root Test 

10.2 Cauchy's Integral Test 

10.3  Cauchy's Condensation Test 

10.4 Summary 

10.5 Keywords 

10.6 Self Assessment 

10.7 Case Study 

10.8 Reference 
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10.1 Cauchy's Root Test 

Statement :ConsiderΣun, is a positive term series such that 

 

(i) if k<1, series converges. 

(ii) if k> 1, series diverges. 

 

 

The Series is Convergent 

 

So the Series is Divergent 

 

For example: 
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But Σ 1/n
p
 is convergent for p>1 and divergent for p≤1. 

Example1: Find the convergence of the series 

 

Solution 

 

Example 2: Discuss the Convergence of the following series 

 

Solution 

 

Hence the given series is convergent 

 

10.2 Cauchy's Integral Test 

Statement: A positive term series f(1)+f(2)+ƒ(3) + ... +ƒ (n) + ... 

where, depending on the integral, f (n) either converges or diverges as n rises. 
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is finite or infinite. 

Proof: 

 

In the figure, the area under the curve in the image spans the interval between the sum of the 

areas of small and big rectangles, from x = 1 to x = n + 1. 

 

 

Since the second inequality states that lim S+1 is also finite if the integral has a finite value, 

Σf(n) is convergent as n approaches ∞.  

Likewise, in the event that the integral is infinite, the series is divergent as the first inequality 

states that limSn → ∞.  

Example 3:Use the integral test to find the convergence of the p-series 

 

Solution 

(i) When p  1 
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The Series is Convergent 

(ii) When p  1 

 

The Series is divergent 

(iii) When p = 1 

 

The Series is Convergent 

 

Example  4: Examine the convergence of the series 

 

Solution 

 

10.3  Cauchy's Condensation Test 

If an is a positive integer greater than 1 and ϕ(n) is positive for all positive integral values of n, 

then the two series, Σ   (n) and Σan  (an), are either both divergent or both convergent. 
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Example 5: Examine the convergence 

 

Solution 

 

But we know that Σ1/n
p
   is convergent when p> 1 and divergent when p = 1 or < 1. 

 

10.4 Summary 

The Cauchy nth root test is a convergence criterion for infinite series that states if 

      √  
   , then: 

 If L<1, the series ∑   
 
   an converges absolutely. 

 If L>1 or L=∞, the series diverges. 

 If L=1, the test is inconclusive. The test assesses convergence by evaluating the limit of 

the nth root of the absolute values of the terms   . It is particularly useful for determining 

absolute convergence of series with positive terms, providing a straightforward criterion 

for convergence analysis. 

10.5 Keywords 

 Cauchy's Condensation Test 

 Series 

 Convergence 

 Divergence 

 Cauchy's Root Test 

 Cauchy's Integral Test 
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10.6Self Assessment 

1. Apply the Cauchy nth root test to determine the convergence of the series ∑
  

  
 
   . 

Calculate       √
  

  

 
and interpret the result. 

2. Compare the Cauchy nth root test with the ratio test for the series ∑
  

  
 
   . Determine 

which test is more suitable for evaluating the convergence of this series and justify your 

answer. 

3. An engineer analyzes the series ∑
     

√ 
 
    in the context of signal processing. Use the 

Cauchy nth root test to determine the convergence of the series and discuss its 

implications for engineering applications.  

4. A physicist studies wave behavior using the series ∑
         

  
 
   , where x represents 

position along a vibrating string. Apply the Cauchy nth root test to analyze the 

convergence of this series and interpret the result in the context of wave mechanics. 

5. Investigate the convergence of the series ∑
       

  
 
    using the Cauchy nth root test. 

Calculate       √
       

  

 
 and discuss the convergence criteria based on the test's 

findings. 
 

10.7 Case Study 

A mathematician investigates the convergence of the series ∑
  

  
 
    using the Cauchy nth root 

test. 

 

Questions: 

1. Apply the test to determine the convergence of the series and calculate       √|
  

  |
 

 

2. Discuss the theoretical implications of the test's findings in mathematical analysis and its 

relevance to series with factorial growth. 

3. How might the mathematician extend this analysis to other series involving factorial 

terms or exponential growth? 

 

10.8 References 
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